并查集
# 并查集
并查集主要是解决图论中「动态连通性」问题的,本文详细介绍并查集的实现流程与编码.
# 一、问题介绍
简单说,动态连通性其实可以抽象成给一幅图连线。比如下面这幅图,总共有 10 个节点,他们互不相连,分别用 0~9 标记:
现在我们的 Union-Find 算法主要需要实现这两个 API:
class UnionFind {
// 将 p 和 q 链接
public void union(int p, int q);
// 判断 p 和 q是否联通
public boolean isConnected(int p, int q);
// 返回途中有多少个联通分量
public int count();
}
2
3
4
5
6
7
8
这里所说的「连通」是一种等价关系,也就是说具有如下三个性质:
自反性:节点
p
和p
是连通的。对称性:如果节点
p
和q
连通,那么q
和p
也连通。传递性:如果节点
p
和q
连通,q
和r
连通,那么p
和r
也连通。
比如说之前那幅图,0~9 任意两个不同的点都不连通,调用connected
都会返回 false,连通分量为 10 个。
如果现在调用union(0, 1)
,那么 0 和 1 被连通,连通分量降为 9 个。
再调用union(1, 2)
,这时 0,1,2 都被连通,调用connected(0, 2)
也会返回 true,连通分量变为 8 个。
判断这种「等价关系」非常实用,比如说编译器判断同一个变量的不同引用,比如社交网络中的朋友圈计算等等。
Union-Find 算法的关键就在于union
和connected
函数的效率。
# 二、基本思路
使用森林(若干棵树)来表示图的动态连通性,用数组来具体实现这个森林。
我们设定树的每个节点有一个指针指向其父节点,如果是根节点的话,这个指针指向自己。比如说刚才那幅 10 个节点的图,一开始的时候没有相互连通,就是这样:
代码部分:
class UnionFind {
// 记录连通分量
private int count;
// 节点 x 的节点是 parent[x]
private int[] parent;
/* 构造函数,n 为图的节点总数 */
public UnionFind(int n) {
// 一开始互不连通
this.count = n;
// 父节点指针初始指向自己
parent = new int[n];
for (int i = 0; i < n; i++)
parent[i] = i;
}
/* 其他函数 */
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
如果某两个节点被连通,则让其中的(任意)一个节点的根节点接到另一个节点的根节点上:
public void union(int p, int q) {
int rootP = find(p);
int rootQ = find(q);
if (rootP == rootQ)
return;
// 将两棵树合并为一棵
parent[rootP] = rootQ;
// parent[rootQ] = rootP 也一样
count--; // 两个分量合二为一
}
/* 返回某个节点 x 的根节点 */
private int find(int x) {
// 根节点的 parent[x] == x
while (parent[x] != x)
x = parent[x];
return x;
}
/* 返回当前的连通分量个数 */
public int count() {
return count;
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
这样,如果节点p
和q
连通的话,它们一定拥有相同的根节点.
public boolean isConnected(int p, int q) {
int rootP = find(p);
int rootQ = find(q);
return rootP == rootQ;
}
2
3
4
5
经过上面的分析可以得到下面完整的代码:
class UnionFind {
// 记录连通分量
private int count;
// 节点 x 的节点是 parent[x]
private int[] parent;
/* 构造函数,n 为图的节点总数 */
public UnionFind(int n) {
// 一开始互不连通
this.count = n;
// 父节点指针初始指向自己
parent = new int[n];
for (int i = 0; i < n; i++)
parent[i] = i;
}
public void union(int p, int q) {
int rootP = find(p);
int rootQ = find(q);
if (rootP == rootQ)
return;
// 将两棵树合并为一棵
parent[rootP] = rootQ;
// parent[rootQ] = rootP 也一样
count--; // 两个分量合二为一
}
/* 返回某个节点 x 的根节点 */
private int find(int x) {
// 根节点的 parent[x] == x
while (parent[x] != x)
x = parent[x];
return x;
}
/* 判断 p 和 q 两点是否联通 */
public boolean isConnected(int p, int q) {
int rootP = find(p);
int rootQ = find(q);
return rootP == rootQ;
}
/* 返回当前的连通分量个数 */
public int count() {
return count;
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
以上代码已经实现了并查集的基本功能,但是它的复杂度并不是最优的,算法的复杂度主要看APIisConnected
和union
中的find
函数,所以说它们的复杂度和find
一样。
find
主要功能就是从某个节点向上遍历到树根,其时间复杂度就是树的高度。我们可能习惯性地认为树的高度就是logN
,但这并不一定。logN
的高度只存在于平衡二叉树,对于一般的树可能出现极端不平衡的情况,使得「树」几乎退化成「链表」,树的高度最坏情况下可能变成N
。
所以说,find
,union
,connected
的时间复杂度都是 O(N)。这个复杂度很不理想的,你想图论解决的都是诸如社交网络这样数据规模巨大的问题,对于union
和connected
的调用非常频繁,每次调用需要线性时间完全不可忍受。
# 三、优化
# 3. 1平衡性优化
我们要知道哪种情况下可能出现不平衡现象,关键在于union
过程:
public void union(int p, int q) {
int rootP = find(p);
int rootQ = find(q);
if (rootP == rootQ)
return;
// 将两棵树合并为一棵
parent[rootP] = rootQ;
// parent[rootQ] = rootP 也可以
count--;
}
2
3
4
5
6
7
8
9
10
我们一开始就是简单粗暴的把p
所在的树接到q
所在的树的根节点下面,那么这里就可能出现「头重脚轻」的不平衡状况,比如下面这种局面:
长此以往,树可能生长得很不平衡。我们其实是希望,小一些的树接到大一些的树下面,这样就能避免头重脚轻,更平衡一些。解决方法是额外使用一个size
数组,记录每棵树包含的节点数,我们不妨称为「重量」:
class UnionFind {
private int count;
private int[] parent;
// 新增一个数组记录树的“重量”
private int[] size;
public UnionFind(int n) {
this.count = n;
parent = new int[n];
// 最初每棵树只有一个节点
// 重量应该初始化 1
size = new int[n];
for (int i = 0; i < n; i++) {
parent[i] = i;
size[i] = 1;
}
}
/* 其他函数 */
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
比如说size[3] = 5
表示,以节点3
为根的那棵树,总共有5
个节点。这样我们可以修改一下union
方法:
public void union(int p, int q) {
int rootP = find(p);
int rootQ = find(q);
if (rootP == rootQ)
return;
// 小树接到大树下面,较平衡
if (size[rootP] > size[rootQ]) {
parent[rootQ] = rootP;
size[rootP] += size[rootQ];
} else {
parent[rootP] = rootQ;
size[rootQ] += size[rootP];
}
count--;
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
这样,通过比较树的重量,就可以保证树的生长相对平衡,树的高度大致在logN
这个数量级,极大提升执行效率。
此时,find
,union
,connected
的时间复杂度都下降为 O(logN),即便数据规模上亿,所需时间也非常少。
# 3.2 路径压缩
这步优化特别简单,所以非常巧妙。我们能不能进一步压缩每棵树的高度,使树高始终保持为常数?
这样find
就能以 O(1) 的时间找到某一节点的根节点,相应的,connected
和union
复杂度都下降为 O(1)。
要做到这一点,非常简单,只需要在find
中加一行代码:
private int find(int x) {
while (parent[x] != x) {
// 进行路径压缩
parent[x] = parent[parent[x]];
x = parent[x];
}
return x;
}
2
3
4
5
6
7
8
每次查找跟节点的时候都会对路径进行压缩:
可见,调用find
函数每次向树根遍历的同时,顺手将树高缩短了,最终所有树高都不会超过 3(union
的时候树高可能达到 3)。
# 四、总结
完整代码:
class UnionFind {
// 连通分量个数
private int count;
// 存储一棵树
private int[] parent;
// 记录树的“重量”
private int[] size;
public UnionFind(int n) {
this.count = n;
parent = new int[n];
size = new int[n];
for (int i = 0; i < n; i++) {
parent[i] = i;
size[i] = 1;
}
}
public void union(int p, int q) {
int rootP = find(p);
int rootQ = find(q);
if (rootP == rootQ) return;
// 小树接到大树下面,较平衡
if (size[rootP] > size[rootQ]) {
parent[rootQ] = rootP;
size[rootP] += size[rootQ];
} else {
parent[rootP] = rootQ;
size[rootQ] += size[rootP];
}
count--;
}
public boolean isConnected(int p, int q) {
return find(p) == find(q);
}
private int find(int x) {
while (parent[x] != x) {
parent[x] = parent[parent[x]];
x = parent[x];
}
return x;
}
public int count() {
return count;
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
Union-Find 算法的复杂度可以这样分析:构造函数初始化数据结构需要 O(N) 的时间和空间复杂度;连通两个节点union
、判断两个节点的连通性connected
、计算连通分量count
所需的时间复杂度均为 O(1)。
# 五、LeetCode题目
- 「力扣」第 547 题:省份数量(中等);
- 「力扣」第 684 题:冗余连接(中等);
- 「力扣」第 1319 题:连通网络的操作次数(中等);
- 「力扣」第 1631 题:最小体力消耗路径(中等);
- 「力扣」第 959 题:由斜杠划分区域(中等);
- 「力扣」第 1202 题:交换字符串中的元素(中等);
- 「力扣」第 947 题:移除最多的同行或同列石头(中等);
- 「力扣」第 721 题:账户合并(中等);
- 「力扣」第 803 题:打砖块(困难);
- 「力扣」第 1579 题:保证图可完全遍历(困难);
- 「力扣」第 778 题:水位上升的泳池中游泳(困难);
- 「力扣」第 839题:相似字符串(困难)。
参考